Testing A Soft Artificial Heart
TEHRAN (Tasnim) – Researchers developed a silicone heart that beats almost like a human heart. They have also tested how well it works.
The silicon heart looks like a real one, and is the goal of the first entirely soft artificial heart: to mimic its natural model as closely as possible.
The silicone heart has been developed by Nicholas Cohrs, a doctoral student in the group led by Wendelin Stark, Professor of Functional Materials Engineering at ETH Zurich.
A well-functioning artificial heart is a real necessity, as about 26 million people worldwide suffer from heart failure while there is a shortage of donor hearts. Artificial blood pumps help to bridge the waiting time until a patient receives a donor heart or their own heart recovers.
The soft artificial heart was created from silicone using a 3D-printing, lost-wax casting technique; it weighs 390 grams and has a volume of 679 cm3.
"It is a silicone monoblock with complex inner structure," Cohrs explained. This artificial heart has a right and a left ventricle, just like a real human heart, though they are not separated by a septum but by an additional chamber. This chamber is in- and deflated by pressurized air and is required to pump fluid from the blood chambers, thus replacing the muscle contraction of the human heart.
Anastasios Petrou, a doctoral student of the Product Development Group Zurich, led by Professor Mirko Meboldt evaluated the performance of this soft artificial heart. The young researchers have just published the results of the experiments in the scientific journal Artificial Organs.
They proved that the soft artificial heart fundamentally works and moves in a similar way to a human heart. However, it still has one problem: it currently lasts for about only 3,000 beats, which corresponds to a lifetime of half to three quarters of an hour. After that, the material can no longer withstand the strain.
"This was simply a feasibility test. Our goal was not to present a heart ready for implantation, but to think about a new direction for the development of artificial hearts," Cohrs explained.
Of course, the tensile strength of the material and the performance would have to be enhanced significantly, he added.